# Microcystin Monitoring at Metropolitan Water District

George Izaguirre
Water Quality Section
March 15, 2006



# History of Toxin Monitoring at Metropolitan

- AWWARF study on microcystin occurrence in 1995-1997 included MWDSC.
- Two major algal blooms in July 2001.
- Filtered algal bloom samples sent to Dr. Boyer's lab in Syracuse, NY.
- Algal toxin project initiated in May 2003.

# Detection of Algal Toxins

- Bioassays: mouse, brine shrimp, rat hepatocytes
- ELISA
- Protein phosphatase inhibition (PPIA)
- HPLC/PDA (photodiode array)
- LC/MS
- Others (experimental or less often used)

# Test Kits Used in Water Quality Lab

- Based on ELISA
- Made by Envirologix Inc., Portland, Maine
- Plate and tube kits differ in methodology, standards, analytical time
- Can detect microcystins and cross-react with nodularin.
- Can provide some quantitation & screening capability.
- Do not permit identification of toxins.

# Comparison of Two Test Kit Methods for Microcystin

#### **Plate**

#### • LOD 0.147 ug/L

- Standards: 0.16, 0.6, 2.5 ug/L
- Time: about 2 hours
- Quantitative
- Requires plate reader
- Use: best for water samples
- Price: \$396

### Tube

- LOD 0.3 ug/L
- Standards: 0.5, 3.0 ug/L
- Time: about 45 min.
- Semi-quantitative
- Read from color intensity
- Use: as screening tool
- Price: \$145

# Principle Behind ELISA Tests for Microcystin

- Sample + antibody-coated surface (wells or tubes) → microcystin bound to antibody
- Enzyme-linked antigen + antibody → binding to remaining unoccupied sites
- Substrate + binding sites → color development inversely proportional to microcystin in sample

# Microcystin Monitoring at MWD

- Monthly, all year.
- Lakes Castaic, Mathews, Perris, Skinner, Silverwood, Diamond Valley, & Calif. Aqueduct.
- Water samples and some benthic algal samples.



### **Completed Tube Assay**



### Wells in Plate Assay Showing Color Development



### Wells in Plate Assay After Acidification





#### **Data Reduction Worksheet**

Operator: Date: Time: Kit Lot#:

| - |   |   |   | - |   | , | _ | ÷ |    |     |    | 3   | -   |    |    |    | Ξ | 5  | , |   |   |   |   |   | - |
|---|---|---|---|---|---|---|---|---|----|-----|----|-----|-----|----|----|----|---|----|---|---|---|---|---|---|---|
|   |   |   |   | - |   | ٠ |   | ٠ |    | 4   | 7  | 2   |     | 1  |    | и  | П | м  |   | - |   | - |   |   |   |
|   | ٠ |   | - |   |   | - | • | - | ٠. |     | •  |     |     | •  | -  | ı  | , | 1  | • |   |   | - |   |   |   |
| • | • | • | • | • | • | ٠ | • | • | •  | •   | _  | •   |     | ۰  | •  | _  | • | •  | ٠ | • | • | • | ٠ | ٠ | - |
| - |   |   | - | - |   | ٠ |   | • | ١. | •   | -  |     |     | •  |    | •  | • |    | ٠ |   |   |   |   |   |   |
|   |   |   |   | - |   | ٠ |   | 2 | •  | -1  |    | , , | ж   | v  | -1 | J. | 3 | ١. |   |   |   | - |   |   |   |
| 3 | - |   |   |   | * | ٠ | ٠ | - | •  |     |    | 1   |     | :  |    | -  | 3 |    |   |   |   | * |   | * |   |
| - |   |   | - | - | ٠ | ٠ | • |   | •  | • 1 | г  | ~   | -   | ī  | Į  |    |   | ٠  | ٠ | • |   |   | • | ٠ |   |
|   |   |   |   | - |   |   |   |   |    |     |    | •   |     | •  |    |    | - |    | ٠ | ٠ |   |   |   | ٠ |   |
| - |   | • | - | - | • | • | ٠ |   | -  | ٠,  |    | ٠.  | e 1 |    | u  | ٠. | - |    |   |   | - | - |   |   |   |
|   |   |   |   |   |   |   |   |   |    |     |    |     |     |    |    |    |   |    |   |   |   |   |   |   |   |
|   |   |   |   | - |   | ٠ | ٠ |   | -  | -   |    | 2   |     | ٠, |    | •  |   |    | ٠ |   |   | - |   |   |   |
| - |   |   | - | - | • | • |   |   | -  | м   | ۲. | •   | ,   | 4  |    |    | - |    |   |   |   | - |   |   |   |
| • |   |   |   | - |   | ٠ |   |   | -  | u   | ч  | -   | -   |    | •  | ,  |   |    | ٠ |   |   | - |   | ٠ | ٠ |

Section I) Calibration Curve

| Calib. Conc.     | rep1  | rep 2 | Abs. Value | %CV  | В/Во | Log(Conc.) |                    |
|------------------|-------|-------|------------|------|------|------------|--------------------|
| Neg. Ctl. Abs. = | 0.414 | 0.414 | 0.414      |      |      |            |                    |
| 0.16 ppb Abs. =  | 0.361 | 0.361 | 0.361      |      | 0.87 | -0.80      | $R^2 = -0.9999$    |
| 0.6 ppb Abs. =   | 0.260 | 0.226 | 0:243      | 9.9% | 0.59 | -0.22      | Slope = -0.2107    |
| 2.5 ppb Abs. =   | 0.105 | 0.114 | 0.110      | 5.8% | 0.26 | 0.40       | Intercept = 0.1943 |



**Estimated** 

#### Section II) Sample Calculations

|        | Paste below |       |       | SAMPLE  |         | PPB     |
|--------|-------------|-------|-------|---------|---------|---------|
| Sample | DATE        | rep 1 | rep 2 | ABS     | %CV     |         |
| 1      | 14-Nov-05   | 0,40  | 0.39  | 0,395   | 2.3%    | 0.11    |
| 2      | 2-Nov-05    | 0.39  | 0.38  | 0:386   | 1.1%    | 0.12    |
| 3      | 9-Nov-05    | 0.19  | 0.17  | 0.175   | 8.1%    | 1.23 LI |
| 4      | 9-Nov-05    | 0.40  | 0.38  | 0.393   | 3.4%    | 0.11    |
| 5      | 30-Nov-05   | 0.41  | 0.43  | 0.416   | 3.7%    | 0.09    |
| 6      | 21-Nov-05   | 0.43  | 0.41  | 0.420   | 3.5%    | 0.09    |
| 7      | 5-Dec-05    | 0.40  | 0.38  | 0.387   | 3.5%    | 0.12    |
| 8      | 9-Dec-05    | 0.39  | 0.39  | 0.388   | 0.7%    | 0.12    |
| 9      |             |       |       | #DIV/0I |         | #DIV/0! |
| 10     |             |       |       | #DIV/0! | #DIV/0! | #DIV/0! |
| 11     |             |       |       | #DIV/0! | #DIV/0! | #DIV/0! |
| 12     |             |       |       | #DIV/01 | #DIV/0! | #DIV/0! |

## Summary of Cyanotoxin Results

- Water samples analyzed: 226
- Number positive for microcystin: 25
- Percent positive: 11.1%
- Most samples <0.2 μg/L
- Range:  $<0.16 \sim 15.7 \,\mu g/L$
- Samples >1.0  $\mu$ g/L: 9 (4.1%)
- Detection limit by plate method (most sensitive):
   0.147 μg/L

# Benthic Microcystin Producer

- Green *Phormidium* 10-14 µm in diameter.
- Found in Lakes Mathews, Skinner, DVL and Perris.
- Is very common component of benthic community.
- Has been analyzed in outside lab and toxin confirmed.



# Recommended Reading

- "Everything a Manager Should Know About Algal Toxins but Was Afraid to Ask," by Dr. Judy Westrick, *Jour. AWWA*, Sept. 2003.
- "Cyanobacterial Harmful Algal Blooms (CyanoHABs): Developing a Public Health Response," by Lorraine C. Backer, *Lake and Reservoir Management*, March 2002.

## Regulatory Issues

- USEPA Candidate Contaminant List (CCL) in 1998 included freshwater cyanobacteria and their toxins.
- USEPA workshop in 2001 identified 3 toxins for possible inclusion in CCL: microcystin, anatoxin-a and cylindrospermopsin.
- WHO guideline for microcystin-LR in drinking water (1998) set at 1.0 μg/L.
- Australian advisory limit for anatoxin-a: 3 μg/L.